Saturday, July 13, 2013

The Obama Climate Plan: Disappointing and Hopeless


by Peter Carter

The Obama plan is a phony fossil fuel PR plan to keep increasing American fossil fuel production, which, under Obama, has reached an all-time high. We have to get atmospheric CO2 down below 350ppm fast – with a planetary emergency climate action plan. Today it is 400ppm. Under the Obama plan, it will only keep going up fast.

It is easy to rate a climate plan, but it seems America doesn’t know the climate science basics. Basic climate science fact number one is “zero carbon” (see onlyzerocarbon.org). If we don’t stop emitting carbon, we can’t stop, or even slow down, global warming.

It is definite that the global temperature and ocean acidification cannot stop increasing unless industrial carbon emissions get to zero. You probably haven’t heard this fact because it means the end of the fossil fuel industry.

It simply means all fossil fuel energy must be replaced by clean, zero-carbon energy. It means that although some fossil fuels are worse polluters than others, any fossil fuel energy (including natural gas) production has to stop and be replaced by real, clean, zero-carbon energy. It means that any climate action plan that does not drop carbon emissions is a deadly dirty lie.

US Fossil Fuel Production under Obama


Some quotes:

Below from: US to become world leader in oil and gas thanks to fracking — The UK Independent, 13 November 2012.

The United States will leapfrog Saudi Arabia and Russia to become the world’s biggest producer of oil and gas in the next five years as the controversial practice of ‘fracking’ for hydrocarbons contained in shale rocks has enabled the country to increase production massively.

US oil and gas production is set to leap by about a quarter by 2020 as the rapid growth of hydraulic fracturing, or fracking, propels the country towards providing all its own energy by 2035, according to the World Energy Outlook report from the International Energy Agency.

The fracking boom will push US oil production up from 8.1 million barrels a day last year to 11.1 million in 2020 while gas extraction will jump from 604 billion cubic metres a day to 747 billion (International Energy Agency).

Maria van der Hoeven, the IEA executive director, said: “North America is at the forefront of a sweeping transformation in oil and gas production that will affect all regions of the world.”

Below from: US may soon become world’s top oil producer — Associated Press, 19 February 2013.

Driven by high prices and new drilling methods, U.S. production of crude and other liquid hydrocarbons is on track to rise 7 percent this year to an average of 10.9 million barrels per day. This will be the fourth straight year of crude increases and the biggest single-year gain since 1951.


Planetary-scale climate change murder

Obama is getting away with planetary-scale climate change murder. His actions as the most influential leader on the planet will affect the entire planet forever.

Obama is proud of his record American oil production: “Now, we absolutely need safe, responsible oil production here in America. That’s why under my administration, America is producing more oil today than at any time in the last eight years.” (February 2012)

With atmospheric carbon at the highest level it’s been in 15 million years and ocean acidification occurring faster than in the past 300 million years, there’s no such thing as safe oil production any more.

Check the Obama climate action plan for any evidence of a decrease in fossil fuel production any time in the future. It is all continued increase, and it is locking America and the world into another 50 years of fossil fuel energy dependency. Only by then, civilization will have collapsed.

Cover up

Quotes from: The President's Climate Action Plan
Unlocking Long-Term Investment in Clean Energy Innovation.
The Fiscal Year 2014 Budget continues the President’s commitment to keeping the United States at the forefront of clean energy research, development, and deployment.  … This includes investment in a range of energy technologies, from advanced biofuels and emerging nuclear technologies – including small modular reactors – to clean coal.
Spurring Investment in Advanced Fossil Energy Projects: In the coming weeks, the Department of Energy will issue a Federal Register Notice announcing a draft of a solicitation that would make up to $8 billion in (self-pay) loan guarantee authority available for a wide array of advanced fossil energy projects under its Section 1703 loan guarantee program.

Clean Coal? Only the coal industry talks the “clean coal” oxymoron, which makes Obama a coal man in the White House, as well as an oil man. There is no such thing as clean coal or oil, and, in any case, the cleanest fossil fuels would be far from zero-carbon.

Biofuels? Burning food is an obvious obscenity. Burning biofuels emits CO2 and incurs a carbon debt from the land being used to produce biofuels – it is nowhere near a zero-carbon energy.

Where is the long-term investment in real, clean, zero-carbon, everlasting energy? Yet this is a fossil-fuel-promoting climate action plan.

All this money is being used as fossil-fuel cover-up, to deceive Americans into thinking there is such a thing as “clean coal” and “ethical oil.” All government money should be going to true clean, zero-carbon energy development if we are to survive. Obama has no intention of replacing or displacing fossil fuel energy from its longstanding energy dominance.

This climate “action” plan is designed to maintain American and world fossil fuel dominance of the energy market. Now that Obama has got US fossil fuel production up to all time record levels, he placates his environmental supporters with the clean-fossil-fuel energy big lie, and they fall for it. It is, of course, too good to be true.

The Real Obama Plan
  • Obama’s advanced fossil fuel energy projects are backward, retrogressive, and impel us faster to global climate catastrophe. These Advanced Fossil Energy Projects (Department of Energy) are designed to advance the insane planet-destroying agenda of the fossil fuel corporations. The future he has planned for American and world energy is a future that won’t last long.
  • Novel oil and gas drilling, stimulation, and completion technologies, including dry fracking, that avoid, reduce, or sequester air pollutants or anthropogenic emission of greenhouse gases
  • Coal-bed methane recovery CO2 capture from synthesis gases in fuel reforming or gasification processes
  • CO2 capture from flue gases in traditional coal or natural gas electricity generation
  • CO2 capture from effluent streams of industrial processing facilities
  • Coal or natural gas oxycombustion
DOE notes that the scope of this solicitation is intended to be broad. DOE will consider both electrical and non-electrical fossil energy use. All fossil fuels, including, without limitation:
  • Coal
  • natural gas
  • oil
  • shale gas
  • oil shale
  • coal bed methane
  • methane hydrates
These are all projects to support the big clean-energy lie. The fossil fuel industry is not wasting money on research into “clean” fossil fuels, which are bogus. The industry knows that feigning “clean” would add huge costs to fossil fuel energy in the attempt. But these US government projects permit the fossil fuel industry to keep up the clean fossil fuel myth. It is fossil fuel PR. Carbon capture and storage (CCS) language is now being used to make fossil fuel energy projects appear to be zero-carbon.

The US oil and gas fracking technology has fast become the end-of-the-world model for the rest of the world to follow. So much for President Obama and the great climate change hope for greenhouse-gas-polluting energy change.

When President Obama talks about American leadership, he means leadership in shale oil, shale gas and methane hydrate gas. He is leading America and the world to Climate Hell.


[ Above post is an extract of the posts that appeared earlier at Uprage and at Boomerwarrior ]



Peter Carter is a retired family MD. Peter has spent many years working with environmental health development policy.
Peter has been a blogger since 2008. You can reach him at Uprage, the Climate Emergency Institute and on Facebook.
“I now focus on global climate change, because if we fail to fix this, we fail on everything,” says Peter.

Thursday, July 11, 2013

Arctic melt hits food security in bitter taste of life on a hotter planet

by David Spratt
Arctic melt has pushed the Jet Stream into a more
meandering, S-shape pattern, dragging 
down and
stalling cold and wet conditions 
over Europe

A wet summer and autumn, followed by a cold winter and spring, in the UK and Ireland have hit wheat and potato production and cattle feed, a foretaste of how climate change can affect food security, even in the developed economies.

And the culprit in this drama is rapid Arctic melting, which has destabilised the Jet Steam and brought extreme weather – unusual cold, heavy snowfall, record rain and hot spells — to much of northern Europe and North America, and record heat to the Arctic. Following Superstorm Sandy’s battering of the US north-east coast in 2012, flooding in June across central Europe was the worst in 400 years.

Rapid Arctic melting – sea-ice volume in September 2012 was down by four-fifths compared to the summer average 30 years ago – has help change the Jet Stream, the river of high altitude air that works to separates Arctic weather from that of northern Europe, Russia and Canada, and which governs much northern hemisphere weather.

The ice loss has added to ocean and atmospheric heat, pushing the Jet Stream into a more meandering, S-shape pattern, dragging down and stalling cold and wet conditions over Europe, and bringing record heat to the Arctic, as was dramatically experienced in Alaska last month.

Professor Jennifer Francis, of Rutgers Institute of Coastal and Marine Science, says the Arctic-driven changes to the Jet Stream allows “the cold air from the Arctic to plunge much further south. The pattern can be slow to change because the [southern] wave of the jet stream is getting bigger… so whatever weather you have now is going to stick around”.

In March, new research found that “the severe loss of summertime Arctic sea ice — attributed to greenhouse warming — appears to enhance Northern Hemisphere jet stream meandering, intensify Arctic air mass invasions toward middle latitudes, and increase the frequency of atmospheric blocking events like the one that steered Hurricane Sandy west into the densely populated New York City area”.

And a recent study by Liu et al found that “the recent decline of Arctic sea ice has played a critical role in the recent cold and snowy winters” across the northern hemisphere.

Last September, Francis warned that 2012′s record sea ice melt could lead to a cold winter in the UK and northern Europe. And so it turned out, with farmers copping the consequences:

WET SUMMER AND AUTUMN: Six out of the last seven summers in the UK (since the record-smashing Arctic melt of 2007) have seen below-average temperatures and sunshine, and above-average rainfall. 2012 was the UK’s second wettest year on record, with autumn rain almost 50% higher than long-term average. In Ireland, twice the average amount of rainfall was recorded in many parts of the country during the three summer months of 2012. People across the UK and Ireland will readily tell you that “We haven’t had a summer in four or five years”, and unusually, for them, complain of “bitter” and “terrible” winters, with temperatures dropping as low as –18C in Northern Ireland.

COLD WINTER AND SPRING: “It’s been the longest winter on record in this country. Not since the records began 70 years ago has there been a March as cold as this year’s. It’s been followed by the coldest April in 25 years in some areas of the country,” reported the Irish Examiner on 9 May 2013. The Irish spring in 2103 was coldest in 62 years across most of country, and dull and windy. Spring in the UK this year was the coldest in 50 years.

BAD COMBINATION: This combination of events has wrecked farmer’s schedules. Less growth in a dull 2012 summer – combined with water-logged crops and pastures in autumn – reduced yields, and some crops had to be left in the ground. The spring 2013 growing season, including for apples and pears as well as pasture, started up to six weeks late due to the cold, dull conditions. And waterlogged fields meant that across Ireland cattle were still being kept in their winter sheds in the first week of June, ostensibly a summer month. The consequences – whilst mild compared to climate-change impacts on vulnerable communities in the developing world from the African Sahel to Asia’s changing monsoons – show how easily the security of food production can be disrupted:

WHEAT: In the UK, a wet autumn, hard winter and cold spring has resulted in one of the smallest wheat harvests in a generation, 30% below normal. Britain, generality the third biggest wheat grower in the EU, will be a net importer for the first time in 11 years. Charlotte Garbutt, a senior analyst at the industry-financed Agriculture and Horticulture Development Board says: “Normally we export around 2.5m tonnes of wheat but this year we expect to have to import 2.5m tonnes.” The latest analysis from the UK Department for the Environment, Food and Rural Affairs says total farming income decreased by £737million in 2012 to £4.7bn, as farmers faced both crop losses and higher feed costs.

STOCK LOSSES: Late snowstorms across England, Sotland, Wales and Ireland March 2013, with drifts of up to 5 metres, killed an estimated 40,000 newborn lambs. In ireland’s west, one-quarter more animals died in the first three months of 2013 compared to 2012, with some vets trained to look for suicidal behaviour in farmers.

POTATO SHORTAGE: A wet autumn and poor season in 2012 prevented many crops being harvested in Ireland. Supermarket price-squeezing has also driven some farmers out of the industry, together resulting in reduced yields of at least 30 per cent in 2012. By spring 2013, potato prices had almost tripled in many parts of Ireland, with supplies exhausted and a reliance on imports from central Europe.

Limavady farmer, James Wray, told UTV News that said the changing weather in recent weeks had forced the price up: “This year has been a terrible growing season with loads of crops lost and loads of crops not harvested and any crops that have been harvested have produced low yields. There just isn’t any potatoes left in the country, there are no farmers with potatoes left, so whatever potatoes are about, are very, very expensive. If you go to any of the major supermarkets most of their potatoes are coming in from Europe just to bridge the gap.”

Potato shortages have a particular cultural resonance in Ireland as a consequence of the Irish potato famine of the mid-nineteenth century, which killed a million people and forced another million to emigrate.

FEED SHORTAGE: In the last week of May (the final week of spring), farmers in Ireland’s west were queuing for hay and silage imports from England, France and Netherland as their winter feed became exhausted and a lack of pasture growth in spring due to cold and overcast conditions, and wet fields, prevented cattle from being moved from their winter sheds. More than 13000 tonnes of feed was imported, but even so farmer Enda Stenson said local farmers “have neither money nor fodder”. Many had sold down their herds to be able to buy feed for the remainder.

BEES IN TROUBLE: Bad weather and disease is also threatening honey production, with some beekeepers expecting to produce no honey as bees have been unable to mate and hives are decimated. And bees play a crucial role in pollinating many crops.

Jim Donohoe, of the Federation of Irish Beekeepers’ Associations, told the Irish Independent that the problem was weather related: “We’ve had bad summers before, but because of the wind, rain and lack of sunshine, we’ve had serious problems with colonies wanting to swarm, but the queens being unable to mate with drones which refused to fly because there wasn’t calm conditions. This year, we had a delayed winter where bees couldn’t fly. The flowers were delayed coming out, and that crucial period meant bees died from old age. All of this combines to about 50pc of colonies being lost. If we don’t get milder weather, the losses will be closer to 75pc.

These stories may seem trivial compared to the devastating impact of climate change on global food security and prices, and their political consequences. Writing on Egypt’s new political turmoil, Nafeez Ahmed notes that:

“Food price hikes have coincided with devastating climate change impacts in the form of extreme weather in key food-basket regions. Since 2010, we have seen droughts and heat-waves in the US, Russia, and China, leading to a dramatic fall in wheat yields, on which Egypt is heavily dependent. The subsequent doubling of global wheat prices – from $157/metric tonne in June 2010 to $326/metric tonne in February 2011 – directly affected millions of Egyptians, who already spend about 40% of their income on food. That helped trigger the events that led to the fall of Hosni Mubarak in 2011, but the same configuration of factors is worsening.”

And Lester Brown, head of the Earth Policy Institute in Washington, has warned that grain harvests are already shrinking as US, India and China come close to ‘peak water’. He says that 18 countries, together containing half the world’s people, are now over-pumping their underground water tables to the point – known as “peak water” – where they are not replenishing and where harvests are getting smaller each year.

Together these stories paint a compelling picture of the threat to food security from climate change, not just in the Middle East, Asia and Africa, but in the heart of the developed world too.


David Spratt studied at Australian National University.
David co-authored the book Climate Code Red (2008).  

David frequently posts at the Climate Code Red website.
Above article was first posted at Reneweconomy.com.au


Related

- Polar jet stream appears hugely deformed - by Sam Carana, December 20, 2012
http://arctic-news.blogspot.com/2012/12/polar-jet-stream-appears-hugely-deformed.html

- The Threat of Wildfires in the North - by Sam Carana, June 27, 2013

Wednesday, July 10, 2013

Wildfires even more damaging

Wildfires cause even more damage than many climate models assume. Much has been written about the threat that wildfires pose to people's safety and health, to crop yields, and the quality of soils and forests.

In addition, wildfires pose a huge threat in terms of climate change, not only due to the impact of emissions on the atmosphere, but there's also the impact of particles (soot, dust and volatile organic compounds) settling down on snow and ice, speeding up their demise through albedo changes. This contributes to the rapid decline of the sea ice and snow cover in the Arctic, a decline that has been hugely underestimated in many climate models.

Furthermore, global warming and accelerated warming in the Arctic cause extreme weather conditions in many places, an impact that is again underestimated in many climate models.

A team of scientists from Los Alamos and Michigan Technological University, led by Swarup China, points out that continued global warming will make conditions for wildfires worse, as was already noted in earlier studies, such as this 2006 study. They also point at the conclusion of a recent study that more biomass burning will lead to more ozone, less OH, and a nonlinear increase of methane's lifetime.

Mixing and classification of soot particles. Field-emission
scanning electron microscope images of four different
categories of soot particles: (a) embedded, (b) partly coated,
(c) bare and (d) with inclusions. Approximately 50% of the
ambient soot particles are embedded, 34% are partly coated
and 12% have inclusions. Only 4% of the particles are bare
soot (not coated or very thinly coated). Scale bars, 500 nm.
Right, spherical tar balls dominate in the emissions.
The scientists recently completed an analysis of particles from the Las Conchas fire that started June 26, 2011, and was the largest fire in New Mexico's history at the time, burning 245 square miles. One of the scientists, Manvendra Dubey, said

 “Most climate assessment models treat fire emissions as a mixture of pure soot and organic carbon aerosols that offset the respective warming and cooling effects of one another on climate. However Las Conchas results show that tar balls exceed soot by a factor of 10 and the soot gets coated by organics in fire emissions, each resulting in more of a warming effect than is currently assumed.”
“Tar balls can absorb sunlight at shorter blue and ultraviolet wavelengths (also called brown carbon due to the color) and can cause substantial warming,” he said. “Furthermore, organic coatings on soot act like lenses that focus sunlight, amplifying the absorption and warming by soot by a factor of 2 or more. This has a huge impact on how they should be treated in computer models.”

Finally, many climate models ignore the threat of large, abrupt methane releases in the Arctic. As discussed in many earlier posts at Arctic-news blog, accelerated warming in the Arctic threatens to spiral out of control as methane levels rise over the Arctic, causing destabilization of methane hydrates and further methane releases, escalating into runaway global warming. 

Monday, July 8, 2013

Climate change fighting town savaged by runaway oil train

by Paul Beckwith

Early in the morning on Saturday July 6th, 2013 five locomotives and 73 tank cars carrying crude oil were parked about 12.5 km uphill (track distance) from the small idyllic Quebec town of Lac-Mégantic about 210 km east of Montreal. Apparently, the sole train engineer had finished his shift and left the train (locomotives running) a few hours earlier to get some sleep in the town; the train sat unmanned awaiting the arrival of the next engineer. Something went horribly wrong; the tank cars uncoupled from the locomotives and started rolling downhill and gathering speed as they headed towards the small town.

Map 1 (from http://www.bbc.co.uk/news/world-us-canada-23221939 ) shows the town location within the province of Quebec in Canada and the general route of the oil train near the town. North is upward for all of the following maps.

Map 1

Map 2 below shows a satellite image from Google Earth of the town and nearby lake.  The red vertical line is for scale, with a length representing a 15 km distance.

Map 2
Map 3 shows a closer-up view of the town. The dark pathway is the route of the train tracks crossing the town from west-north-west to the south-east. This Google Earth image is several years old, and rail cars can be seen at the time this image was obtained beyond the track curve towards the south-east. The train track forks into a northward and southward curving line where it crosses a major road.

Map 3
Map 4 shows an even closer view of the region. The yellow line of length 0.2 km indicates the scale. Buildings within the red zone that I outlined by freehand were leveled as the train jumped the track near the fork and plowed along the orange path. I marked red dots on the individual structures within the red zone of destruction, and counted about 40 buildings. Most of these buildings were completely leveled, with the exception of a few near the perimeter of the red zone that were severely damaged.

Map 4
Map 5 indicates the general location where the train was parked and uncoupled from the 5 locomotives, in the town of Nantes, for the shift change. This Google Earth image from 2012 has an elevation of 519 m above mean sea level on the tracks at the location where some train cars are seen in this older image. This location has the highest elevation and drops off to either side along the tracks as determined from Google Earth elevations.

Map 5
Thus, from Google Earth the elevation of Nantes is determined to be roughly 519 meters, while that of the derailment zone in Lac-Mégantic is 399 meters. From simple physics, the potential energy of the train at Nantes (PE = mgh; m=mass, g=9.81 m/s2, h= height) was converted to kinetic energy at the derailment site (KE=0.5mv2). Solving for the speed of the train the mass cancels out giving v = sqrt(2*g*h) giving a value of 48.5 m/s (175 km/hr = 109 mph) which was clearly enough to cause the derailment if correct. This speed is an upper limit value, assuming no rolling resistance or air resistance or tank car braking. The actual number is certainly somewhat lower, but the amount is difficult to calculate exactly but we will estimate it. Assuming constant acceleration of the train down the hill, the time to reach the town after starting from rest at the top of the hill is given by t = 2x/v (x=length of track between locations = 12.5 km, v = speed at bottom of hill) gives a rolling time of 515 seconds (8 minutes, 35 seconds). The average acceleration along the track path down the hill is a=v/t=0.09417 m/s2 (or about 0.96% of the acceleration due to gravity). Again, this is for the no friction case, modifications for friction will be estimated shortly.

Map 6 shows the route connecting Nantes to Lac-Mégantic. The rail distance is roughly 12.5 km as measured on Google Earth and indicated by the yellow lines (connecting the red point tie dots along the track), and the vertical height change is 120 meters along this path down to the derailment site. The runaway train successfully negotiated two very sharp curves. The first is at Laval-Nord (elevation 457 m, height drop from Nantes of 62 m) giving a calculated speed of 34.9 m/s (126 km/hr), a derailment here would have taken the train into forests. The second sharp curve is 0.38 km north of the lake (elevation 431 m, height drop 88 m) with a calculated speed of 41.6 m/s (150 km/hr). Failure to negotiate the second curve would have been a derailment into the forests, and would have likely spilled crude oil that would drain into the lake.

Map 6
Map 7 from this link (map http://www.cbc.ca/news/interactives/before-after/lac-megantic/ba.html, north is down on this map) is a sliding before-and-after image that shows the buildings that were destroyed in the derailment and explosions. The after-image is also shown below. One can count 44 pancaked tank cars piled up alongside one another. The train came from the west (right side on this image which has north pointing downward) and the lead cars traveled a distance of at least 200 meters after leaving the rails. It is unclear where the other 30 or so tank cars are, presumably they still along the track behind the derailed cars (to the right on the image below).

Map 7
Some background history/information on the town can be found in this linked article: (http://www.ctvnews.ca/canada/lac-megantic-history-of-a-picturesque-quebec-forestry-town-1.1357424 ).
Quoting from this article:
“According to the (town) website, it was one of 52 municipalities in Quebec to receive a "Four Blossoms" rating from the provincial organization "Les Fleurons du Quebec," which rewards municipalities for attractive greenery. It was also ranked among the first eight municipalities in Quebec to earn a "Carbon responsible" attestation, for climate-change measures, from the Enviro-access consulting company.”

Awards won by Lac-Mégantic
for climate-change measures
This award winning, climate change fighting town had no chance against the runaway oil train; which is an incredibly sad irony. Unfortunately, the train successfully negotiated two very sharp curves at speeds of 34.9 m/s and 41.6 m/s prior to entering the town of Lac-Mégantic. Derailment on either of these curves would have spared the town. In the town it derailed at roughly 48.5 m/s on a much more gradual turn crossing near or at a major road. As mentioned earlier, these speeds are upper limit speeds assuming no rolling resistance or air resistance and an on-track acceleration calculated from the basic physics of constant acceleration to be 0.96% of gravity. What is the effect of friction? If we assume a 20% reduction due to friction (rolling + aerodynamic + tank car braking) then acceleration is reduced to 0.07534 m/s2, rolling time is increased to 576 seconds, and derailment speed is reduced to 43.4 m/s (156 km/hr or 97 mph).

Still this is an incredibly fast speed that is hard to believe. Is this ridiculous? Re-examine the images (Map 7) above of the wreck zone, and observe that for more than half the train to completely derail and pancake (>44 tank cars) required an extremely high derailment speed. Going even one step further, let us now assume that there was even more friction, for example from more hydraulic braking action on the individual tank cars, such that the total frictional acceleration reduction was reduced by 50% to 0.0478 m/s2. Rolling time and derailment speed would respectively now become 723 seconds and 34.6 m/s (125 km/hr or 78 mph). I doubt this is fast enough to cause the level of pancaking and derailment distance observed, so my guess on the derailment speed would be between the two previous numbers. The train “black-box” should come out with accurate numbers after it is analyzed.

Given that train tank car transport of crude oil has increased by 28,000% in the last 5 years (http://www.huffingtonpost.ca/2013/07/07/lac-megantic-explosion-oil_n_3558647.html ) without a corresponding increase in safety inspections (and even cost cutting reductions) it is virtually certain that the frequency of accidents will increase. Pipelines are no answer to transporting oil, given that we are undergoing abrupt climate change. In fact, increases in the frequency, severity, and geographical regions of extreme weather events due to jet stream behavior completely changing due to rapid climate change is also greatly increasing the risk of oil transport by rail and pipeline from flooding, drought, heat waves, and extremely large temperature swings over short periods of time. In fact all infrastructure is being severely compromised by extreme weather. As the people in Calgary, Toronto, India, Europe, and many other places around the world are discovering first hand.


Paul Beckwith is a part-time professor with the laboratory for paleoclimatology and climatology, department of geography, University of Ottawa. He teaches second year climatology/meteorology. His PhD research topic is “Abrupt climate change in the past and present.” He holds an M.Sc. in laser physics and a B.Eng. in engineering physics and reached the rank of chess master in a previous life.

Saturday, July 6, 2013

Wildfires in Canada affect the Arctic

created by Sam Carana with screenshot from wunderground.com
Wildfires can cause a lot of emissions. Obviously, when wood burns, carbon dioxide is emitted into the atmosphere. Wildfires also cause further emissions, such as methane, soot and carbon monoxide. A large part of such emissions can be broken relatively quickly down by hydroxyl, but when large emissions take place, this can take a while. In other words, the lifetime of gases such as methane is extended, particularly in the Arctic where hydroxyl levels are already very low to start with.

Furthermore, the soot that is emitted by such wildfires can settle down on snow and ice, changing its albedo and thus contributing to the demise of the snow and ice cover. As the image shows, soot can be blown high up into the Arctic, depending on the direction of the wind.

Wildfires in Canada and Alaska have now been raging for quite some time. The above image dates back to late last month. Today's images can be quite similar, as illustrated by the two images below.

created by Sam Carana with screenshot from wunderground.com
created by Sam Carana with screenshot from wunderground.com
Smoke from wildfires can travel over quite long distances, as also evidenced by these NASA satellite images showing wildfire smoke crossing the Atlantic Ocean. The relation between wildfire smoke and methane concentrations is further illustrated by the image below.

methane levels July 5, 2013, over 1950 ppb in yellow in 6 layers from 718-840 mb
created by Sam Carana with methanetracker.org - sea ice data by SSMIS
Below, a similar image showing methane on the afternoon of July 6, 2013.

methane levels July 6, 2013, over 1950 ppb in yellow, 7 layers from 469-586 mb
created by Sam Carana with methanetracker.org - sea ice data by SSMIS
Below, a screenshot created with methanetracker, showing some methane still persisting on July 8, 2013.  On the right, the methane originating from the Quebec wildfires appears to have moved farther over the Atlantic Ocean, due to the Coriolis effect. The image also shows some worryingly high methane concentrations in spots above the Arctic sea ice. The spots north of Alaska were also examined in the video at Cruising for methane.

methane levels on the morning of July 8, 2013, over 1950 ppb in yellow, 10 layers from 545 to 742 mb
created by Sam Carana with methanetracker.org
Below, a NASA satellite picture showing wildfires in Manitoba, Canada, captured by Terra satellite on June 29, 2013.

NASA image courtesy Jeff Schmaltz, MODIS Rapid Response Team
In conclusion, while carbon pollution gets a lot of attention, the Arctic is also strongly affected by other emissions that can result from wildfires.

Cruising for methane



Cruising for methane with Sam Carana, a video at youtube.com/watch?v=3l6PtWf4i9w

Sunday, June 30, 2013

Cyclonic Activity persists in Arctic


Above image, edited from Naval Research Laboratory, shows that a large area has developed at the center of the Arctic Ocean with very thin ice, at some places down to virtually zero, i.e. open water.

This development is to a large extent caused by persistent cyclonic activity in the Arctic. The Arctic is warming up faster than anywhere else, and this is reducing the temperature difference between the Arctic and lower latitudes. As a result, the polar vortex and jet stream get distorted, resulting in extreme weather. This is graphically illustrated by the animation below, from the California Regional Weather Server.